From Corn to Cassava: Unveiling PLA Origins for Sustainable 3D Printing
DOI:
https://doi.org/10.35134/jitekin.v13i2.101Keywords:
Additive Manufacturing, 3D Printing, Polylactic Acid, Corn Starch, Sugarcane, Cassava Starch, SustainabilityAbstract
The focus of this paper is to review the polylactic acid (PLA) sourcing for 3D printing and investigating with a specific emphasis on corn starch, sugarcane, and cassava starch. PLA is recognized for its biodegradable nature and versatility as a thermoplastic, has witnessed a notable evolution in the global context of material selection for 3D printing. While regions such as the United States and Canada have traditionally derived PLA from corn starch, there is a growing trend in Asia where cassava starch have emerged as prominent alternatives. This study seeks to discover the complexities of the of PLA origins, looking into the sustainability considerations that contribute to the selection of source materials. By shedding light on the diverse trajectories of PLA sourcing, this study provides valuable insights into the ever-changing dynamics of material preferences for 3D printing on a worldwide scale. Moreover, the understandings generated through this study are composed to play a pivotal role in shaping the trajectory of future practices in additive manufacturing. As the industry continues to evolve and grapple with the imperative of environmental responsibility, a nuanced understanding of the sustainability dimensions of PLA sourcing becomes a compass guiding researchers, practitioners, and manufacturers toward ecologically sound choices. Ultimately, the study serves as a valuable resource, empowering participants to navigate the complex landscape of PLA-based 3D printing with a thorough judgement on sustainability, thereby fostering a more environmentally responsible future for additive manufacturing.
References
Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures, 182, 36-53. https://doi.org/10.1016/j.compstruct.2017.08.088
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7), 1529. https://doi.org/10.3390/polym12071529
Siemiński, P. (2021). Introduction to fused deposition modeling. In Additive Manufacturing (pp. 217-275). Elsevier. https://doi.org/10.1016/B978-0-12-818411-0.00008-2
Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC advances, 11(28), 17151-17196. https://doi.org/10.1039/D1RA02390J
[6] Vatanpour, V., Dehqan, A., Paziresh, S., Zinadini, S., Zinatizadeh, A. A., & Koyuncu, I. (2022). Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology, 296, 121433. https://doi.org/10.1016/j.seppur.2022.121433
Zhang, X., & Liou, F. (2021). Introduction to additive manufacturing. In Additive manufacturing (pp. 1-31). Elsevier. https://doi.org/10.1016/B978-0-12-818411-0.00009-4
Srivastava, M., Rathee, S., Patel, V., Kumar, A., & Koppad, P. G. (2022). A review of various materials for additive manufacturing: Recent trends and processing issues. Journal of Materials Research and Technology, 21, 2612-2641. https://doi.org/10.1016/j.jmrt.2022.10.015
Lipson, H., & Kurman, M. (2013). Fabricated: The new world of 3D printing. John Wiley & Sons.
Altıparmak, S. C., Yardley, V. A., Shi, Z., & Lin, J. (2022). Extrusion-based additive manufacturing technologies: State of the art and future perspectives. Journal of Manufacturing Processes, 83, 607-636. https://doi.org/10.1016/j.jmapro.2022.09.032
Kanishka, K., & Acherjee, B. (2023). A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. Journal of Manufacturing Processes, 89, 220-283. https://doi.org/10.1016/j.jmapro.2023.01.034
Praveena, B. A., Lokesh, N., Buradi, A., Santhosh, N., Praveena, B. L., & Vignesh, R. (2022). A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential. Materials Today: Proceedings, 52, 1309-1313. https://doi.org/10.1016/j.matpr.2021.11.059
Lantada, A. D., & Morgado, P. L. (2012). Rapid prototyping for biomedical engineering: current capabilities and challenges. Annual review of biomedical engineering, 14, 73-96. https://doi.org/10.1146/annurev-bioeng-071811-150112
Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 117(15), 10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
Lai, J., Wang, C., & Wang, M. (2021). 3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 8(2). https://doi.org/10.1063/5.0024177
Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (Vol. 17, pp. 160-186). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-56127-7
Ahlers, D., Wasserfall, F., Hendrich, N., & Zhang, J. (2019, August). 3D printing of nonplanar layers for smooth surface generation. In 2019 IEEE 15th international conference on automation science and engineering (CASE) (pp. 1737-1743). IEEE. https://doi.org/10.1109/COASE.2019.8843116
Kumar, S., Gopi, T., Harikeerthana, N., Gupta, M. K., Gaur, V., Krolczyk, G. M., & Wu, C. (2023). Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control. Journal of Intelligent Manufacturing, 34(1), 21-55. https://doi.org/10.1007/s10845-022-02029-5
Hsueh, M. H., Lai, C. J., Liu, K. Y., Chung, C. F., Wang, S. H., Pan, C. Y., ... & Zeng, Y. S. (2021). Effects of printing temperature and filling percentage on the mechanical behavior of fused deposition molding technology components for 3D printing. Polymers, 13(17), 2910. https://doi.org/10.3390/polym13172910
Afonso, J. A., Alves, J. L., Caldas, G., Gouveia, B. P., Santana, L., & Belinha, J. (2021). Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models. Rapid Prototyping Journal, 27(3), 487-495. https://doi.org/10.1108/RPJ-03-2020-0043
Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604-617. https://doi.org/10.1108/RPJ-09-2014-0135
Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7), 1529. https://doi.org/10.3390/polym12071529
Sonia, P., Kumar, A. S., Khan, I., Pahwa, S., Salman, Z. N., & Singh, N. (2023). Sustainable Manufacturing of High-Performance Composites from Recycled Materials. In E3S Web of Conferences (Vol. 430, p. 01105). EDP Sciences. https://doi.org/10.1051/e3sconf/202343001105
Joseph, T. M., Kallingal, A., Suresh, A. M., Mahapatra, D. K., Hasanin, M. S., Haponiuk, J., & Thomas, S. (2023). 3D printing of polylactic acid: recent advances and opportunities. The International Journal of Advanced Manufacturing Technology, 125(3-4), 1015-1035. https://doi.org/10.1007/s00170-022-10795-y
Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T., & Chen, E. Y. X. (2022). Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 7(2), 83-103. https://doi.org/10.1038/s41578-021-00363-3
Tu, Y. M., Wang, X. M., Yang, X., Fan, H. Z., Gong, F. L., Cai, Z., & Zhu, J. B. (2021). Biobased high-performance aromatic-aliphatic polyesters with complete recyclability. Journal of the American Chemical Society, 143(49), 20591-20597. https://doi.org/10.1021/jacs.1c10162
Tursi, A. (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962-979. https://doi.org/10.18331/BRJ2019.6.2.3
Jhanji, Y. (2023). Mushroom and corn fibre-the green alternatives to unsustainable raw materials. In Sustainable Fibres for Fashion and Textile Manufacturing (pp. 129-158). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824052-6.00012-3
Nolan, A. (2017). The next production revolution: Key issues and policy proposals. The Next Production Revolution, 25. https://doi.org/10.1787/9789264271036-5-en
Eiteman, M. A., & Ramalingam, S. (2015). Microbial production of lactic acid. Biotechnology letters, 37, 955-972. https://doi.org/10.1007/s10529-015-1769-5
de Albuquerque, T. L., Júnior, J. E. M., de Queiroz, L. P., Ricardo, A. D. S., & Rocha, M. V. P. (2021). Polylactic acid production from biotechnological routes: A review. International journal of biological macromolecules, 186, 933-951. https://doi.org/10.1016/j.ijbiomac.2021.07.074
Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology advances, 31(6), 877-902. https://doi.org/10.1016/j.biotechadv.2013.04.002
Denison, E. (2009). Print and production finishes for sustainable design. RotoVision.
Singhvi, M., & Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). Rsc Advances, 3(33), 13558-13568. https://doi.org/10.1039/c3ra41592a
Datta, D., & Halder, G. (2019). Effect of media on degradability, physico-mechanical and optical properties of synthesized polyolefinic and PLA film in comparison with casted potato/corn starch biofilm. Process Safety and Environmental Protection, 124, 39-62. https://doi.org/10.1016/j.psep.2019.02.002
Ohkita, T., & Lee, S. H. (2006). Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of applied polymer science, 100(4), 3009-3017. https://doi.org/10.1002/app.23425
Groot, W. J., & Borén, T. (2010). Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. The International Journal of Life Cycle Assessment, 15, 970-984. https://doi.org/10.1007/s11367-010-0225-y
Morão, A., & De Bie, F. (2019). Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. Journal of Polymers and the Environment, 27(11), 2523-2539. https://doi.org/10.1007/s10924-019-01525-9
Ratshoshi, B. K., Farzad, S., & Görgens, J. F. (2021). Techno‐economic assessment of polylactic acid and polybutylene succinate production in an integrated sugarcane biorefinery. Biofuels, Bioproducts and Biorefining, 15(6), 1871-1887. https://doi.org/10.1002/bbb.2287
Silalertruksa, T., & Gheewala, S. H. (2020). Competitive use of sugarcane for food, fuel, and biochemical through the environmental and economic factors. The International Journal of Life Cycle Assessment, 25, 1343-1355. https://doi.org/10.1007/s11367-019-01664-0
Gond, R. K., Naik, T. P., Gupta, M. K., & Singh, I. (2022). Development and characterisation of sugarcane bagasse nanocellulose/PLA composites. Materials Technology, 37(14), 2942-2954. https://doi.org/10.1080/10667857.2022.2088616
Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. https://doi.org/10.1016/j.rser.2019.03.050
Marques, S., Moreno, A. D., Ballesteros, M., & Gírio, F. (2018). Starch biomass for biofuels, biomaterials, and chemicals. In Biomass and green chemistry: Building a renewable pathway, 69-94. https://doi.org/10.1007/978-3-319-66736-2_4
Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564-582. https://doi.org/10.1016/j.ijbiomac.2020.12.175
Gulati, A., & Mohan, G. (2018). Towards sustainable, productive and profitable agriculture: Case of Rice and Sugarcane (No. 358).
Tayade, A. S., Vasantha, S., Anusha, S., Kumar, R. A., Hemaprabha, G., Geetha, P., ... & Kesawat, M. S. (2023). Water-efficient genotypes along with conservation measures significantly reduce the green and blue water footprints in sugarcane (Saccharum spp.). Scientific Reports, 13(1), 13229. https://doi.org/10.1038/s41598-023-40223-4
Inman-Bamber, N. G., & Smith, D. M. (2005). Water relations in sugarcane and response to water deficits. Field crops research, 92(2-3), 185-202. https://doi.org/10.1016/j.fcr.2005.01.023
Auras, R. A., Lim, L. T., Selke, S. E., & Tsuji, H. (Eds.). (2022). Poly (lactic acid): synthesis, structures, properties, processing, applications, and end of life. John Wiley & Sons. https://doi.org/10.1002/9781119767480
Farrán, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernáiz, M. J., & Linhardt, R. J. (2015). Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chemical reviews, 115(14), 6811-6853. https://doi.org/10.1021/cr500719h
Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Tensile, barrier, dynamic mechanical, and biodegradation properties of cassava/sugar palm fiber reinforced cassava starch hybrid composites. BioResources, 12(4), 7145-7160. https://doi.org/10.15376/biores.12.4.7145-7160
Abotbina, W., Sapuan, S. M., Ilyas, R. A., Sultan, M. T. H., Alkbir, M. F. M., Sulaiman, S., ... & Bayraktar, E. (2022). Recent developments in cassava (Manihot esculenta) based biocomposites and their potential industrial applications: a comprehensive review. Materials, 15(19), 6992. https://doi.org/10.3390/ma15196992
Tran, T., Da, G., Moreno-Santander, M. A., Vélez-Hernández, G. A., Giraldo-Toro, A., Piyachomkwan, K., ... & Dufour, D. (2015). A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resources, Conservation and Recycling, 100, 31-40. https://doi.org/10.1016/j.resconrec.2015.04.007
Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: a review. Food and Bioprocess Technology, 8, 729-748. https://doi.org/10.1007/s11947-015-1478-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Teknologi

This work is licensed under a Creative Commons Attribution 4.0 International License.