Goods Stock Management using the K-Means Algorithm Method
DOI:
https://doi.org/10.35134/jitekin.v9i2.15Keywords:
K-Means, Data Mining, Clustering, Cluster, PengelompokanAbstract
The grouping of Mazaya products at PT. Bougenville Anugrah can still do manuals in calculating purchases, sales and product inventories. Requires time and data. For this reason, a research is needed to optimize the inventory of Mazaya goods by computerization. The method used in this research is K-Means Clustering on sales data of Mazaya products. The data processed is the purchase, sales and remaining inventory of Mazaya products in March to July 2019 totaling 40 pieces. Data is grouped into 3 clusters, namely cluster 0 for non-selling criteria, cluster 1 for best-selling criteria and cluster 2 for very best-selling criteria. The test results obtained are cluster 0 with 13 data, cluster 1 with 25 data and cluster 2 with 2 data. So to optimize inventory is to multiply goods in cluster 2, so as to save costs for management of Mazayaproducts that are not available. K-Means clustering method can be used for data processing using data mining in grouping data according to criteria.
References
K. Fatmawati, dan A. P. Windarto, “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (DBD) Berdasarkan Provinsi”, CESS (Journal of Computer Engineering System and Science), vol. 3 no. 2, hal. 173-178, 2018. doi: 10.24114/cess.v3i2.9661.
I. Parlina, A. P. Windarto, A. Wanto, dan M. R. Lubis, “ Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai YangLayak Mengikuti Asessment Center Untuk Clustering Program SDP”, CESS (Journal of Computer Engineering System and Science), vol. 3, no. 1, hal. 87-93, 2018. doi: 10.24114/cess.v3i1.8192.
Gustientiedina, M. H. Adiya, dan Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru”, Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, hal. 17-24, 2019. doi: https://doi.org/10.25077/ TEKNOSI.v5i1.2019.17-24.
N. Agustina, dan Prihandoko, “Perbandingan Algoritma K-Means Dengan Algoritma Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan”, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 3, hal. 621-626, 2018. doi: https://doi.org/10.29207/resti.v2i3.492.
F. Yunita, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru (Studi Kasus: Universitas Islam Indragiri)”, SISTEMASI, vol. 7, no. 3, hal. 238-249, 2018. doi: 10.32520/stmsi.v7i3.388.
D. Triyansyah, dan D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing”, IncomTech, Jurnal Telekomunikasi dan Komputer, vol. 8, no. 3, hal. 163-182, 2018. doi: 10.22441/incomtech.v8i2.4174.
I. W. A. W. Kusuma, dan R. L. Ellyana,“Penerapan Citra Terkompresi Pada Segmentasi Citra Menggunakan Algoritme K-MEANS”, JUTEI,vol. 2, no. 1, hal. 65-74, 2018. doi: 10.21460/jutei.2018.21.65.
F. Mahmuda, M. Sitorus, H. Widyastuti, dan D. Kurniawan, “Clustering Profil Pengunjung Perpustakaan Menggunakan Algoritma K-Means”, JAIC, vol. 1, no. 1, Hal. 14-21, Oct. 2018.